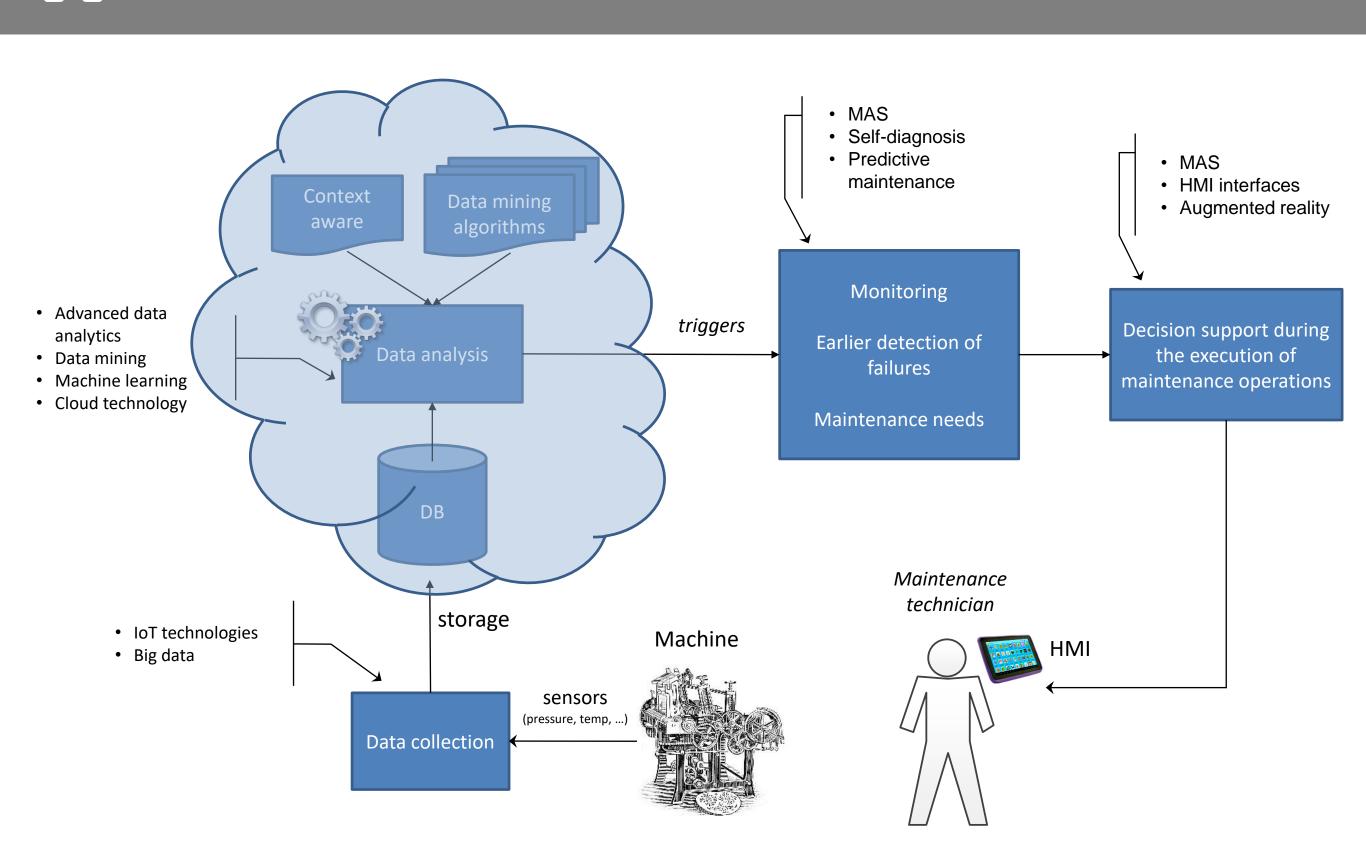
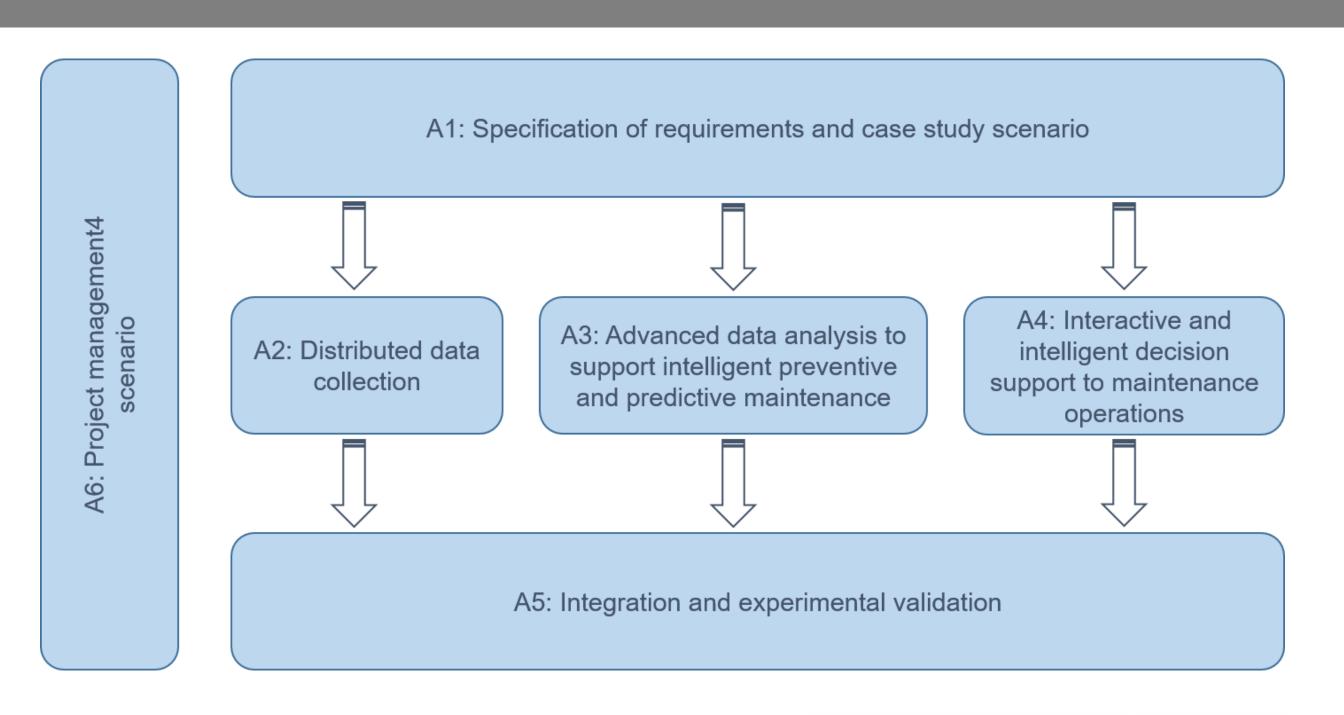


Intelligent and Predictive Maintenance in Manufacturing Systems


Problem and Motivation

- Manufacturing is a stochastic, dynamic and often chaotic environment.
- Maintenance is crucial to ensure production efficiency, since the occurrence of failures causes the loss of productivity and business opportunities.
- Maintenance costs are extremely significant, but unfortunately necessary to ensure the required productivity levels.
- Traditionally, maintenance strategies are not taking into consideration the huge amount of data being generated in the shop floor and the available emergent ICT technologies.
- Innovative-value explicitly extracted from the needs of the industrial partner (i.e. Catraport) given its daily experience in the field of industrial production.


Objectives

- Develop an intelligent approach for industrial maintenance that:
 - > Considers advanced analysis of the collected data to monitor and detect earlier the occurrence of disturbances and consequently the need to implement maintenance interventions;
 - > Provides an intelligent decision support, articulated with HMI technologies, to the technician during the maintenance interventions;
- Aligned with Industrie 4.0.
- Prototype in an industrial metal stamping unit addressing **TRL 4.**

Approach

Work Plan

										Year 1												Year 2					
Activity n.	Activity Denomination	Person*month	Acronym of the Leader participant	Acronyms of partners involved in the activity	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18					
	Specification of requirements and case study scenarios	8,50	Catraport	IPB, IPVC, IPCA																							
2	Distributed data collection	11,90	IPB	IPVC																							
3	Advanced data analysis to support inteligent preventive and predictive maintenance	17,80	IPB	IPCA, Catraport																							
4	Interactive and intelligent decision support to maintenance operations	23,30	IPVC	IPB, IPCA				i																			
6 1	Integration and experimental validation	17,00	Catraport	IPB, IPVC, IPCA																							
7	Project management	1,40	IPB	Catraport, IPVC IPCA																							
		79,90			M1 1st Progress Report						s 2nd Progress						M2 N					/13					
										ss																	
										Report						Report					ort						

Alignment with R&I priority domains

- Framed with "Advanced Production Systems", considered nuclear to the NUTS II Norte region, and focused on the development of applied technological R&D activities with potential impact on the industrial manufacturing sector.
- Focused in the topic of "Industria 4.0", which program was recently launched by the Portuguese government after the initial promotion in April 2013 by the German government.

Strategic impact of the project

- Great improvement of the maintenance process, increasing the OEE and the shop-floor throughput.
- Improvement of the productivity and the profitability by Catraport, by reducing machine downtimes and maintenance costs.
- Several axes of the Operational Programs (POs) are covered.

Research team (IPB)

- Paulo Leitão (pleitao@ipb.pt) Carla Geraldes
- José Barbosa

Ana Cachada

- Leonel Deusdado
- Jacinta Costa

